Managing Console 1/O Operations © 301

is equivalent to the following two statements:

cout.write(stringl, m);
cout.write(string2, n);

|10.5 Formatted Console I/O Operations

C++ supports a number of features that could be used for formatting the output. These
features include:

ios class functions and flags. .
Manipulators.
User-defined output functions.

The ios class contains a large number of member functions that would help us to format

the output in a number of ways. The most important ones among them are listed in
Table 10.2.

Table 10.2 ios format functions

Function Task
Width O To specify the required field size for displaying an output value
precision () To specify the number of digits to be displayed after the decimal point

of a float value
fill() To specify a character that is used to fill the unused portion of a field

setf() To specify format flags that can control the form of output display (such
as left-justification and right-justification)

unsetf() To clear the flags specified

Manipulators are special functions that can be included in the I/O statements to alter the
format parameters of a stream. Table 10.3 shows some important manipulator functions
that are frequently used. To access these manipulators, the file iomanip should be included
in the program.

Table 10.3 Manipulators

Manipulators Equivalent ios function
setw() width()
setprecision() precision()
setfill() fill)

setiosflags() setf()
resetiosflags() unsetf()

302e Object-Oriented Programming with C++

In addition to these functions supported by the C++ library, we can create our own
manipulator functions to provide any special output formats. The following sections will
provide details of how to use the pre-defined formatting functions and how to create new
ones.

Defining Field Width: width()

We can use the width() function to define the width of a field necessary for the output of an
item. Since, it is a member function, we have to use an object to invoke it, as shown below:

cout.width(w);

where w is the field width (number of columns). The output will be printed in a field of w
characters wide at the right end of the field. The width() function can specify the field
width for only one item (the item that follows immediately). After printing one item (as per
the specifications) it will revert back to the default. For example, the statements

cout.width(5);
cout << 543 << 12 << "\n";

will produce the following output:

L] [5]a]3]1]2]

The value 543 is printed right-justified in the first five columns. The specification width(5)
does not retain the setting for printing the number 12. This can be improved as follows:

cout.width(5);

cout << 543;
cout.width(5);

cout << 12 << "\n";

This produces the following output:

L1 [slefsl [[[n]2]

Remember that the field width should be specified for each item separately. C++ never
truncates the values and therefore, if the specified field width is smaller than the size of the
value to be printed, C++ expands the field to fit the value. Program 10.4 demonstrates how
the function width() works.

Managing Console I/O Operations 0303

EotaR A R R 2 SN
#include <iostream>
using namespace std;

int main()

{
int items[4] = {10,8,12,15};
int cost[4] = {75,100,60,99};

cout.width(5);
cout << "ITEMS";
cout.width(8);
cout << "COST";

cout.width(15);
cout << "TOTAL VALUE" << "\n";

int sum = 0;

for{int i=0; i<4; i++)

{
cout.width(5);
cout << items[i];

cout.width(8);
cout << cost[i];

int value = items[i] * cost[i];
cout.width(15);

cout << value << "\n";

sum = sum + value;

}

cout << "\n Grand Total = ";

cout.width(2);
cout << sum << "\n";

return 0,

PROGRAM 10.4

304e Object-Oriented Programming with C++

The output of Program 10.4 would be:

ITEMS COST TOTAL VALUE
10 75 750
8 100 800
12 60 720
15 99 1485

Grand Total = 3755

rnole

A field of width two has been used for printing the value of sum and the result is not
truncated. A good gesture of C++ !

Setting Precision: precision()

By default, the floating numbers are printed with six digits after the decimal point. However,
we can specify the number of digits to be displayed after the decimal point while printing
the floating-point numbers. This can be done by using the precision() member function as
follows:

{ cout.precision(d); |

where d is the number of digits to the right of the decimal point. For example, the statements

cout.precision(3);

cout << sqrt(2) << "\n";
cout << 3.14159 << "\n";
cout << 2.50032 << "\n";

will produce the following output:
1.141 (truncated)
3.142 (rounded to the nearest cent)
2.5 {(no trailing zeros)
Not that, unlike the function width(), precision() retains the setting in effect until it is
reset. That is why we have declared only one statement for the precision setting which is
used by all the three outputs.

We can set different values to different precision as follows:

cout.precision(3);

Managing Console I/O Operations —0 305
cout << sqrt(2) << "\n";

cout.precision(5); // Reset the precision
cout << 3.14159 << "\n"; ‘

We can also combine the field specification with the precision setting. Example:
cout.precision(2);
cout.width(5);
cout << 1.2345;

The first two statements instruct: “print two digits after the decimal point in a field of five
character width”. Thus, the output will be:

o] [2]3]

Program 10.5 shows how the functions width() and precision() are jointly used to control
the output format.)

' PRECISTON SETTING WITH precision()

#include <iostream>
#include <cmath>

using namespace std;

int main()
{

cout << "Precision set to 3 digits \n\n";
cout.precision(3);

cout.width(10);

cout << "VALUE";

cout.width(15);

cout << "SQRT_OF VALUE" << "\n";

for(int n=1; n<=5; n++)

{

cout.width(8);

cout << n;

cout.width(13);

cout << sqrt(n) << "\n"; : e
}

(Contd)

306e@ Object-Oriented Programming with C++

cout << "\n Precision set to 5 digits \n\n";
cout.precision(5); v // precision parameter changed
cout << " sqrt(10) = " << sqrt(10) << "\n\n";

n

cout.precision(0); // precision set to default
cout << " sqrt(10) = " << sqrt(10) << " (default setting)\n";

u

return 0;

PROGRAM 10.5

Here is the output of Program 10.5

Precision set to 3 digits
VALUE SQRT_OF _VALUE

1 1
2 1.41
3 1.73
4 2
5 2.24

Precision set to 5 digits

sqrt(10) = 3.1623
sqrt(10) = 3.162278 (default setting)

rnote ~

/
Observe the following from the output:

1. The output is rounded to the nearest cent (i.e., 1.6666 will be 1.67 for two digit
precision but 1.3333 will be 1.33).

2. Trailing zeros are truncated.

3. Precision setting stays in effect until it is reset.

4. Default precision is 6 digits.)

-

Filling and Padding: fill()

We have been printing the values using much larger field widths than required by the
values. The unused positions of the field are filled with white spaces, by default. However,
we can use the fill() function to fill the unused positions by any desired character. It is used
in the following form:

Managing Console I/O Operations ¢ 307

cout.fill (ch);

Where ch represents the character which is used for filling the unused positions. Example:
cout.fill('*');
cout.width(10);
cout << 5250 << "\n";

The output would be:

L[Ix]-15]2]5]0]

Financial institutions and banks use this kind of padding while printing cheques so that
no one can change the amount easily. Like precision(), fill() stays in effect till we change
it. See Program 10.6 and its output.

#include <iostream>

using namespace std;

int main()
{ cout.fill('<');
cout.precision(3);
for(int n=1; n<=6; n++)
{
“cout.width(5);
cout << n;
cout.width(10);
cout << 1.0 / float(n) << "\n";
if (n == 3)

cout.fill ('>');
}
cout << "\nPadding changed \n\n";
cout.fill ('#'); /! fill() reset
cout.width (15); : ,
cout << 12.345678 << "\n"; sk

return 0;

_ PROGRAM 10.6

3086 Object-Oriented Programming with C++

The output of Program 10.6 would be:

<<<<]<<<<<<<<<]
<<<<Pe<<<<<<(), §
<<<<3<<<<<(), 333
>>>>4>>>>>>(0,25
>>>36>>5>>5>>>(), 2
>>>>6>>>>>0,167

Padding changed

FHEFH#A###12.346

Formatting Flags, Bit-fields and setf()

We have seen that when the function width() is used, the value (whether text or number)
is printed right-justified in the field width created. But, it is a usual practice to print the
text left-justified. How do we get a value printed left-justified? Or, how do we get a floating-
point number printed in the scientific notation?

The setf(), a member function of the ios class, can provide answers to these and many
other formatting questions. The setf() (setf stands for set flags) function can be used as
follows: '

[cout.setf(argl,ar92)|

The argl is one of the formatting flags defined in the class ios. The formatting flag
specifies the format action required for the output. Another ios constant, arg2, known as bit
field specifies the group to which the formatting flag belongs.

Table 10.4 shows the bit fields, flags and their format actions. There are three bit fields
and each has a group of format flags which are mutually exclusive. Examples:

cout.setf(ios::left, ios::adjustfield);
cout.setf(ios::scientific, ios::floatfield);

Note that the first argument should be one of the group members of the second argument.
Consider the following segment of code:

cout. fill1('*');

cout.setf(ios::left, ios::adjustfield);

cout.width(15);
cout << "TABLE 1" << "\n";

Managing Console I/O Operations € 309

Table 10.4 Flags and bit fields for setf{) function

Format required Flag (argl) Bit-field (arg2)
Left-justified output ios :: left ios :: adjustfield
Right-justified output ios :: right ios :: adjustfield
Padding after sign or base i0s :: internal ios :: adjustfield
Indicator (like +##20)

Scientific notation ios :: scientific ios :: floatfield
Fixed point notation ios :: fixed ios :: floatfield
Decimal base ios :: dec ios :: basefield
Octal base ios :: oct ios :: basefield
Hexadecimal base i0s :: hex ios :: basefield

This will produce the following output:
HRDNERDNEEEEEEE

The statements

cout.fill ('*');

cout.precision(3);

cout.setf(ios::internal, jos::adjustfield);
cout.setf(ios::scientific, ios::floatfield);
cout.width(15);

cout << -12.34567 << "\n";

will produce the following output:

P Je[3 s e+ [0 1]

rnote

The sign is left-justified and the value is right left- justified. The space between them is
padded with stars. The value is printed accurate to three decimal places in the scientific
notation.

Displaying Trailing Zeros and Plus Sign

If we print the numbers 10.75, 25.00 and 15.50 using a field width of, say, eight positions,
with two digits precision, then the output will be as follows:

110

3100 Object-Oriented Programming with C++

Note that the trailing zeros in the second and third items have been truncated.

Certain situations, such as a list of prices of items or the salary statement of employees,
require trailing zeros to be shown. The above output would look better if they are printed as
follows:

10.75
25.00
15.50

The setf() can be used with the flag ios::showpoint as a single argument to achieve this
form of output. For example,

cout.setf(ios::showpoint); // display trailing zeros

would cause cout to display trailing zeros and trailing decimal point. Under default precision,
the value 3.25 will be displayed as 3.250000. Remember, the default precision assumes a
precision of six digits.

Similarly, a plus sign can be printed before a positive number using the following statement:
cout.setf(ios::showpos); // show +sign
For example, the statements

cout.setf(ios::showpoint);
cout.setf(ios::showpos);

cout.precision(3);

cout.setf(ios::fixed, ios::floatfield);
cout.setf(jos::internal, ios::adjustfield);
cout.width(10);

cout << 275.5 << "\n";

will produce the following output:

L[[2]7]5] [5]0]0]

The flags such as showpoint and showpos do not have any bit fields and therefore are
used as single arguments in setf(). This is possible because the setf() has been declared as
an overloaded function in the class ios. Table 10.5 lists the flags that do not possess a
named bit field. These flags are not mutually exclusive and therefore can be set or cleared
independently.

Managing Console 1/O Operations 311

Table 10.5 Flags that do not have bit fields

Flag Meaning
ios :: showbase Use base indicator on output
ios :: showpos Print + before positive numbers
i0s :: showpoint Show trailing decimal point and zeroes
ios :: uppercase Use uppercase letters for hex output
ios :: skipus Skip white space on input
ios :: unitbuf Flush all streams after insertion
ios :: stdio Flush stdout and stderr after insertion

PRSI SR A R R AR

Program 10.7 demonstrates the setting of various formatting flags using the overloaded
setf() function.

(ITH FLAGS IN setf()

#include <iostream$
#include <cmath>

using namespace std;
int main()

cout.fill('*');
cout.setf(ios::left, ios::adjustfield);
cout.width(10);
cout << "VALUE";

cout.setf(ios::right, ios::adjustfield);
cout.width(15);
cout << "SQRT OF VALUE" << "\n";

cout.fil1('.");

cout.precision(4);

cout.setf(ios::showpoint);
cout.setf(ios::showpos);

cout.setf(ios::fixed, ios::floatfield);

for(int n=1; n<=10; n++)
cout.setf(ios::internal, ios::adjustfield);
cout.width(5); :

cout << nj;

cout.setf(ios::right, ijos::adjustfield);
cout.width{20);

cout << sqrt(n) << "\n";

(Contd)

312e- Object-Oriented Programming with C++

// floatfield cha..ged
cout.setf(ios::scientific, ios::floatfield);
cout << "\nSQRT(100) = " << sqrt(100) << "\n";

return 0;

PROGRAM 10.7

The output of Program 10.7 would be:

VALUYE*********SORT OF VALUE

B +1.0000
Fooili i +1.4142
R +1.7321
L +2.0000
AT TR, +2.2361
R +2.4495
S +2.6458
T +2.8284
R N +3.0000
+o.1000 et +3.1623

SQRT(100) = +1.0000e+001
rote

The flags set by setf() remain effective until they are reset or unset.

A format flag can be reset any number of times in a program.

We can apply more than one format controls jointly on an output value.
The setf() sets the specified flags and leaves others unchanged.

- W=

|10.6 Managing Output with Manipulators

The header file iomanip provides a set of functions called manipulators which can be used
to manipulate the output formats. They provide the same features as that of the ios member
functions and flags. Some manipulators are more convenient to use than their counterparts
in the class ios. For example, two or more manipulators can be used as a chain in one
statement as shown below:

cout << manipl << manip2 << manip3 << item;
cout << manipl << iteml << manip2 << item2;

This kind of concatenation is useful when we want to display several columns of output.

Managing Console I/ O Operations €313

The most commonly used manipulators are shown in Table 10.6. The table also gives
their meaning and equivalents. To access these manipulators, we must include the file
tomanip in the program.

Table 10.6 Manipulators and their meanings

Manipulator Meaning Equivalent

setw (int w)

setprecision(int d) Set the field width to w. width()
Set the floating point precision to d. precision()
setfill(int ¢) Set the fill character to c. fill()
setiosflags(long f) Set the format flag f. setf()
resetiosflags(long f) Clear the flag specified by f. unsetfl)

“\n”

endl Insert new line and flush stream

Some examples of manipulators are given below:
cout << setw(10) << 12345;

This statement prints the value 12345 right-justified in a field width of 10 characters.
The output can be made left-justified by modifying the statement as follows:

cout << setw(10) << setiosflags(ios::left) << 12345;

One statement can be used to format output for two or more values. For example, the
statement

cout << setw(5) << setprecision(2) << 1.2345
<< setw(10) << setprecision(4) << sqrt(2)
<< setw(15) << setiosflags(ios::scientific) << sqrt(3);
<< endl;

will print all the three values in one line with the field sizes of 5, 10, and 15 respectively.
Note that each output is controlled by different sets of format specifications.

We can jointly use the manipulators and the ios functions in a program. The following
segment of code is valid:

cout.setf(ios::showpoint);
cout.setf(ios::showpos);

cout << setprecision(4);

cout << setiosflags(ios::scientific);
cout << setw(10) << 123.45678;

314 e Object-Oriented Programming with C++

rode

There is a major difference in the way the manipulators are implemented as compared to
the ios member functions. The ios member function return the previous format state
which can be used later, if necessary. But the manipulator does not return the previous
format state. In case, we need to save the old format states, we must use the ios member
functions rather than the manipulators. Example:

cout.precision(2); // previous state
int p = cout.precision(4); // current state;

When these statements are executed, p will hold the value of 2 (previous state) and the
new format state will be 4. We can restore the previous format state as follows:

cout.precision{p); /] p=2

Program 10.8 illustrates the formatting of the output values using both manipulators
and ios functions.

s

Saa “;é“’gﬁe VR s
#include <iostream>
#include <iomanip>

using namespace std;

int main()

{

cout.setf(ios::showpoint);

cout << setw(5) << "n"
<< setw(15) << "Inverse_of n"
<< setw(15) << "Sum of terms\n\n";

double term, sum = 0;

for(int n=1; n<=10; n++)
{

L

i

term -
sum

1.0 / float(n);
sum + term;

cout << setw(5) << n
<< setw(14) << setprecision{4)

(Contd)

Managing Console 1/ O Operations 0315

<< setiosflags(ios::scientific) << term
<< setw(13) << resetiosflags(ios::scientific)
<< sum << endl;

}

return 0;

PROGRAM 10.8

The output of Program 10.8 would be:

n Inverse of n Sum of terms
1 1.0000e+000 1.0000
2 5.0000e-001 1.5000
3 3.3333e-001 1.8333
4 2.5000e-001 2.0833
5 2.0000e-001 2.2833
6 1.6667e-001 2.4500
7 1.4286e-001 2.5929
8 1.2500e-001 2.7179
9 1.1111e-001 2.8290
10 1.0000e-001 2.9290

Designing Our Own Manipulators

We can design our own manipulators for certain special purposes. The general form for
creating a manipulator without any arguments is:

ostream & manipulator {ostream & output)

return output;

}

Here, the manipulator is the name of the manipulator under creation. The following
function defines a manipulator called unit that displays “inches™

ostream & unit(ostream & output)

{

output << " inches";
return output;

316 @ Object-Oriented Programming with C++
The statement
cout << 36 << unit;
will produce the following output
36 inches
We can also create manipulators that could represent a sequence of operations. Example:

ostream & show(ostream & output)

{
output.setf(ios::showpoint);
output.setf(ios::showpos);
output << setw(10);
return output;

}

This function defines a manipulator called show that turns on the flags showpoint and
showpos declared in the class ios and sets the field width to 10.

Program 10.9 illustrates the creation and use of the user-defined manipulators. The
program creates two manipulators called currency and form which are used in the main

program.

usereoern

#include <iostream>
#include <iomanip>

using namespace std;

// user-defined manipulators

ostream & currency(ostream & output)

{
output << "Rs";
return output;

}

ostream & form(ostream & output)
(N
output,setf(ios::showpos);
output.setf(ios::showpoint);
(Contd)

Managing Console I/ O Operations 9317

output.fill('**);

output.precision(2);

output << setiosflags(ios::fixed)
<< setw(10);

return output;

}
int main()
{

cout << currency << form << 7864.5;

return 0;

PROGRAM 10.9

The output of Program 10.9 would be:

g8

Rs**+7864.50

Note that form represents a complex set of format functions and manipulators.

SUMMARY

i, /

In C++, the /O system is designed to work with different /O devices. This I/O system
supplies an interface called ‘stream’ to the programmer, which is independent of the
actual device being used.

A stream is a sequence of bytes and serves as a source or destination for an I/O data.

The source stream that provides data to the program is called the input stream and the
destination stream that receives output from the program is called the output stream.

The C++ I/O system contains a hierarchy of stream classes used for input and output
operations. These classes are declared in the header file ‘iostream’.

cin represents the input stream connected to the standard input device and cout
represents the output stream connected to the standard output device.

The istream and ostream classes define two member functions get() and put() to
handle the single character I/O operations.

The >> operator is overloaded in the istream class as an extraction operator and the
<< operator is overloaded in the ostream class as an insertion operator.

We can read and write a line of text more efficiently using the line oriented I/O functions
getline() and write() respectively.

318e

<
Ny

A

Object-Oriented Programming with C++

The ios class contains the member functions such as width(), precision(), fill(), setf(),
unsetf() to format the output.

The header file ‘iomanip’ provides a set of manipulator functions to manipulate output
formats. They provide the same features as that of ios class functions.

We can also design our own manipulators for certain special purposes.

Key Terms

VYVYVYVYVYYYYVYYYVYVYYYVYY¥YYVYVYVYYVYVYY

adjustfield

basefield

bit-fields

console /0 operations
decimal base
destination stream
field width

fill()

filling

fixed point notation
flags

floatfield ‘
formatted console /O
formatting flags
formatting functions
get()

getline()
hexadecimal base
imput stream
internal

ios

iomanip

10stream

istream

left-justified
manipulator

octal base

ostream

YVVYVYVYVYVYYYYVYYYVYVYVYVYVYYVYYYVYYYYVYYVYYYVYY

output stream
padding
precision()
put()
resetiosflags()
right-justified
scientific notation
setf()

setfill()
setiosflags()
setprecision()
setting precision
setw()

showbase
showpoint
showpos

skipus

source stream
standard input device
standard output device
stream classes
streambuf
streams

unitbuf

unsetf()

width()

write()

Managing Console 1/ O Operations 0319

' Review Questions

10.1
10.2
10.3
10.4
10.5
10.6
10.7

10.8

10.9
10.10

10.11

10.12
10.13
10.14
10.15

10.16

What is a stream?
Describe brieflv the features of I/ 0 system supported by C++.
How do the 1/0 facilities in C++ differ from that in C?
Why are the words such as cin and cout not considered as keywords?
How is eout able to display various types of data without any special instructions?
Why is it necessary to include the file iostream in all our programs?
Discuss the various forms of get() function supported by the input stream. How
are they used?
How do the following two statements differ in operation?
cin >> C;
cin.get(c); .
Both ein and getline() function can be used for reading a string. Comment.
Discuss the implications of size parameter in the following statement:

cout.write(line, size);
What does the following statement do?
cout.write(sl,m).write(s2,n);

What role does the iomanip file play?

What is the role of file() function? When do we use this function?

Discuss the syntax of set() function.

What is the basic difference between manipulators and ios member functions in

implementation? Give examples.

State whether the following statements are TRUE or FALSE.

(a) A C++ stream is a file.

(b) C++ never truncates data.)

(¢) The main advantage of width() function is that we can use one width
specification for more than one items.

(d) The get(void) function provides a single-character input that does not skip
over the white spaces.

(e) The header file iomanip can be used in place of iostream.

(f) We cannot use both the C 1/0 functions and C++ 1/0 functions in the same
program.

(g) A programmer can define a manipulator that could represent a set of format
functions.

320e Object-Oriented Programming with C++
10.17 What will be the result of the following programs segment?

for(i=0.25; i<=1.0; i=i+0.25)
{
cout.precision(5);
cout.width(7);
cout << i,
cout.width(10);
cout <<i*i<< "\n";
}
cout << setw(10) << "TOTAL ="
<< setw(20) << setprecision(2) << 1234.567
<< endl;

10.18 Discuss the syntax for creating user-defined manipulators. Design a single
manipulator to provide the following output specifications for printing float
values:

(a) 10 columns width

(b) Right-justified

(¢) Two digits precision

(d) Filling of unused places with *
(e) Trailing zeros shown

I Debugging Exercises

10.1 To get the output Bufferl: Jack and Jerry Buffer2: Tom and Mono, what do you
have to do in the following program?

#include <iostream.h>
void main()
{
char bufferl[80];
char buffer2[80];

cout << "Enter value for bufferl : ";
cin >> bufferl;
cout << "Bufferl : " << bufferl << endl;

cout << "Enter value for buffer2 : ";
cin.getline(buffer2, 80);
cout << "Buffer2 : " << buffer2 << endl;

Managing Conséle I/ O Operations -0 321

10.2 Will the statement cout.setf(ios::right) work or not?

#include <iostream.h>
void main()
{
cout.width(5);
cout << "99" << endl;

cout.setf(jos::left);
cout.width(5);
cout << "99" << endl;

cout.setf(ios::right);
cout << "99" << endl;

10.3 State errors, if any, in the following statements.
(a) cout << (void*) amount;
(b) cout << put{"John");
(¢) cout << width();
(d) int p = cout.width(10);
(e) cout.width(10).precision(3);
(f) cout.setf(ios::scientific,ios::1eft);
(g) ch = cin.get();
(h) cin.get().get();
(i) cin.get(c).get();
(G) cout << setw(5) << setprecision(2);"
(k) cout << resetiosflags(ios::left |ios::showpos);

I Programming Exercises

10.1 Write a program to read a list containing item name, item code, and cost
interactively and produce a three column output as shown below.

NAME CODE COST
Turbo C++ 1001 250.95
C Primer 905 95.70

.............

.............

Note that the name and code are left-justified and the cost is right-justified with
a precision of two digits. Trailing zeros are shown.

324 e

This is illustrated in Fig. 11.1.

Write
data
(to files)

cin >>
(get data
from
keyboard)

We have already discussed the technique of handling data communication between the
console unit and the program. In this chapter, we will discuss various methods available for

External memory

Data files

O

Internal memory

Program + Data

N

Console unit

Screen

Keyboard

-

Object-Oriented Programming with C++

read data
(from files)

cout <<
(put data
to screen)

Program-file interaction

Console-program
interaction

Fig. 11.1 « Consol-program-file interaction g
: i

storing and retrieving the data from files.

The I/O system of C++ handles file operations which are very much similar to the console
input and output operations. It uses file streams as an interface between the programs and
the files. The stream that supplies data to the program is known as input stream and the
one that receives data from the program is known as output stream. In other words, the
input stream extracts (or reads) data from the file and the output stream inserts (or

writes) data to the file. This is illustrated in Fig. 11.2.

read data

Input stream

|

data

Disk

files

write data

Output stream

input

Program l

data
output

Fig.11.2 <« File input and output streams §

Working with Files —0 325

The input operation involves the creation of an input stream and linking it with the
program and the input file. Similarly, the output operation involves establishing an output
stream with the necessary links with the program and the output file.

|11.2 Classes for File Stream Operations

The I/O system of C++ contains a set of classes that define the file handling methods. These
include ifstream, ofstream and fstream. These classes are derived from fstreambase
and from the corresponding iostream class as shown in Fig. 11.3. These classes, designed to
manage the disk files, are declared in fstream and therefore we must include this file in any

program that uses files.
{ ios

iostream
file istream [[streambuf] [ostream
I [
iostream
fstream [ifstream | [fstream | ofstream filebuf

[fstream base |

1

Fig. 11.3 & Stream classes for file operations (contained in fstream file)

Table 11.1 shows the details of file stream classes. Note that these classes contain many
more features. For more details, refer to the manual.

Ill.3 Opening and Closing a File

If we want to use a disk file, we need to decide the following things about the file and its
intended use:

1. Suitable name for the file.
2. Data type and structure.

328 0- Object-Oriented Programming with C++

ofstream outfile("salary"); // creates outfile and connects
// "salary" to it

.....

Program2
ifstream infile("salary"); // creates infile and connects
// "salary" to it
Program 1

—_| N\ pu

outfile data
"] salary
\/ file |
Program 2 get
/ data
e -
infile

Fig. 11.5 ¢ Two file streams working on one file

The connection with a file is closed automatically when the stream object expires (when
the program terminates). In the above statement, when the program1 is terminated, the
salary file is disconnected from the outfile stream. Similar action takes place when the
program 2 terminates.

Instead of using two programs, one for writing data (output) and another for reading
data (input), we can use a single program to do both the operations on a file. Example.

.....

.....

outfile.close(); // Disconnect salary from outfile
ifstream infile("salary"); // and connect to infile

.....

.....

infile.close(); // Disconnect salary from infile

Working with Files

— 329

Although we have used a single program, we created two file stream objects, outfile (to
put data to the file) and infile (to get data from the file). Note that the use of a

statement like

outfile.close();

disconnects the file salary from the output stream outfile. Remember, the object outfile
still exists and the salary file may again be connected to outfile later or to any c.ler
stream. In this example, we are connecting the salary file to infile stream to read data.

Program 11.1 uses a single file for both writing and reading the data. First, it takes data
from the keyboard and writes it to the file. After the writing is completed, the file is closed.
The program again opens the same file, reads the information already written to it and

displays the same on the screen.

// Creating files with constructor function

#include <iostream.h>
#include <fstream.h>

int main()
{
ofstream outf("ITEM");
cout << "Enter item name:";
char name[30];
cin >> name;
outf << name << "\n";
cout << "Enter item cost:";
float cost;
cin >> cost;
outf << cost << "\n";
outf.close();

ifstream inf("ITEM");

inf >> name;
inf >> cost;

// connect ITEM file to outf

// get name from key board and

// write ts file ITEM

// get cost from key board and
// write to file ITEM

// Disconnect ITEM file from outf
// connect ITEM file to inf

// read name from file ITEM
// read cost from file ITEM

(Contd)

3320 Object—Oriented Programming with C++

fin.open("capital"); ~// connect "capital®
cout << "\nContents of capital file \n";

while(fin)

! fin.getline(line, N);

| cout << line ;

fin.close();

return 0;

PROGRAM 11.2

The output of Program 11.2 would be:

Contents of country file
United States of America
United Kingdom

South Korea

Contents of capital file
Washington

London
Seoul
: connect one
Disk file to fout fout
—e e
country ﬁ‘k{[j— [[JL*“\ PrograTrD
file] ‘

fin

—e

connect one
file to fin

Fig. 11.6 < Streams working on multiple files i

At times we may require to use two or more files simultaneously. For example, we may
require to merge two sorted files into a third sorted file. This means, both the sorted files
have to be kept open for reading and the third one kept open for writing. In such cases, we

Working with Files €333

need to create two separate input streams for handling the two input files and one output
stream for handling the output file. See Program 11.3.

// Reads the files created in Program 11.2

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h> // for exit() function

int main()

{
const int SIZE = 80;
char 1ine[SIZE];

ifstream finl, fin2; // create two input streams
finl.open("country");
fin2.open("capital");

for(int i=1; i<=10; i++)
{
if(finl.eof() !'= 0)
{
cout << "Exit from country \n";
exit(1);
}
finl.getline(line, SIZE);
cout << "Capital of "<< line ;

if(fin2.eof() != 0)

cout << “Exit from capital\n";
exit(1l);
}

fin2.getline(line,SIZE);
cout << line << "\n";

}

return 0;

}

PROGRAM 11.3

The output of Program 11.3 would be:

Capital of United States of America
Washington

336 Object-Oriented Programming with C++

can use these pointers to move through the files while reading or writing. The input pointer
is used for reading the contents of a given file location and the output pointer is used for
writing to a given file location. Each time an input or output operation takes place, the
appropriate pointer is automatically advanced.

Default Actions

When we open a file in read-only mode, the input pointer is automatically set at the beginning
so that we can read the file from the start. Similarly, when we open a file in write-only
mode, the existing contents are deleted and the output pointer is set at the beginning. This
enables us to write to the file from the start. In case, we want to open an existing file to add
more data, the file is opened in ‘append’ mode. This moves the output pointer to the end of
the file (i.e. the end of the existing contents). See Fig. 11.7.

“hello” file
Open for reading only | H IE lL IL {O{ {WIO lR |L 1DJ
input pointer
Open in append mode i ‘ ‘ '
(for writing more data) H E L L 0 I t wilo R L D

output pointer

Open for writing only l l l]] l I ‘ 1 1 l

output pointer

Fig. 11.7 & Action on file pointers while opening a file

Functions for Manipulation of File Pointers

All the actions on the file pointers as shown in Fig. 11.7 take place automatically by default.
How do we then move a file pointer to any other desired position inside the file? This is
possible only if we can take control of the movement of the file pointers ourselves. The file
stream classes support the following functions to manage such situations:

#* seekg() Moves get pointer (input) to a specified location.
seekp() Moves put pointer(output) to a specified location.
#® tellgO) Gives the current position of the get pointer.

tellp(Gives the current position of the put pointer.

For example, the statement

infile.seekg(10);

Working with Files 0337

moves the file pointer to the byte number 10. Remember, the bytes in a file are numbered
beginning from zero. Therefore, the pointer will be pointing to the 11th byte in the file.

Consider the following statements:

ofstream fileout;
fileout.open("hello", ios::app);
int p = fileout.tellp();

On execution of these statements, the output pointer is moved to the end of the file "hello"
and the value of p will represent the number of bytes in the file.

Specifying the offset

We have just now seen how to move a file pointer to a desired location using the ‘seek’
functions. The argument to these functions represents the absolute position in the file. This
is shown in Fig. 11.8.

file
start end

l«—— m bytes ——T

file pointer

outfile.seekp(m);

Fig. 11.8 <« Action of single argument seek function

‘Seek’ functions seekg() and seekp() can also be used with two arguments as follows:

seekg (offset, refposition);
seekp (offset, refposition);

The parameter offset represents the number of bytes the file pointer is to be moved from
the location specified by the parameter refposition. The refposition takes one of the following
three constants defined in the ios class:

ios:beg start of the file
iosucur current position of the pointer

joszend End of the file

The seekg() function moves the associated file’s ‘get’ pointer while the seekp() function
moves the associated file’s ‘put’ pointer. Table 11.3 lists some sample pointer offset calls and
their actions. fout is an ofstream object.

3400— Object-Oriented Programming with C++

}4— 2 bytes ‘—-’
L9900101o |001ooo?6]

Character format {2 ‘ 5 ’ 9 4_}

I
,-\ 4 bytes ——{

Fig. 11.9 < Binary and character formats of an integer value i

Binary format

The binary format is more accurate for storing the numbers as they are stored in the
exact internal representation. There are no conversions while saving the data and therefore
saving is much faster.

The binary input and output functions takes the following form:

infile. read ((char *) & V, sizeof (v));
outfile.write ((char *) & V, sizeof (V));

These functions take two arguments. The first is the address of the variable V, and the
second is the length of that variable in bytes. The address of the variable must be cast to
type char * (i.e. pointer to character type). Program 11.5 illustrates how these two functions
are used to save an array of float numbers and then recover them for display on the

screen.

#include <iostream.h>

#include <fstream.h>

#include <iomanip.h>

const char * filename = "BINARY";
int main()

float height[4] = {175.5,153.0,167.25,160.70} ;

ofstream outfile;
outfile.open(filename);

outfile.write({char *) & height, sizeof(height));

outfile.close(); // close the file for reading
(Contd)

Working with Files © 341

for(int i=0; i<4; i++) // clear array from memory
height[i] = 0;

ifstream infile;
infile.open(filename);

infile.read((char *) & height, sizeof(height));

for(i=0; i<4; i++)
{
cout.setf(ios::showpoint);
cout << setw(10) << setprecision(2)
<< height[i];
}

infile.close();

return 0;

PROGRAM 11.5

The output of Program 11.5 would be:
175.50 153.00 167.25

Reading and Writing a Class Object

We mentioned earlier that one of the shortcomings of the /O system of C is that it cannot
handle user-defined data types such as class objects. Since the class objects are the central
elements of C++ programming, it is quite natural that the language supports features for
writing to and reading from the disk files objects directly. The binary input and output
functions read() and write() are designed to do exactly this job. These functions handle the
entire structure of an object as a single unit, using the computer’s internal representation
of data. For instance, the function write() copies a class object from memory byte by byte
with no conversion. One important point to remember is that only data members are written
to the disk file and the member functions are not.

Program 11.6 illustrates how class objects can be written to and read from the disk files.

The length of the object is obtained using the sizeof operator. This length represents the
sum total of lengths of all data members of the object.

" READING D VRITING €LASS ORECTS |

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>

(Contd)

3426@ Object-Oriented Programming with C+-+

class INVENTORY
{
char name[10]; v // item name
int code; // item code
‘float cost; // cost of each item
public:
void readdata(void);
void writedata(void);

1

void INVENTORY :: readdata(void) // read from keyboard
{

cout << "Enter name: "; cin >> name;

cout << "Enter code: "; cin >> code;

cout << "Enter cost: "; cin >> cost;

}

void INVENTORY :: writedata(void) // formatted display on
{ // screen
cout << setjosflags(ics::left)

<< setw(10) << name

<< setiosflags(ios::right)

<< setw(10) << code

<< setprecision(2)

<< setw(10) << cost

<< endl;

}

int main()

{ INVENTORY item[3]; // Declare array of 3 objects
fstream file; // Input and output fiie
file.open("STOCK.DAT", ios::in | ios::out);
cout << "ENTER DETAILS FOR THREE ITEMS \n";
for(int i=0;i<3;i++)

! item[i].readdata();
file.write((char *) & item[i],sizeof(item[i]));

(Contd)

Working with Files 9343

file.seekg{0); // reset to start

cout << "\nOUTPUT\n\n";
for(i = 0; i < 3; i++)
{
file.read((char *) & item[i], sizeof(item[i]));

item{i].writedata();

1
s

file.close();
return 0;

PROGRAM 11.6

The output of Program 11.6 would be:

ENTER DETAILS FOR THREE ITEMS
Entar name: C++

Ernter code: 101

Enter cost: 175

[nter name: FORTRAN

Enter code: 107

Enter cost: 150

Erter name: JAVA

Enter code: 115
fnter cost: 225

L4

QUTPYT

Cr+ w0l 175
FORTRAN e 150
JAVA 115 225

The progran: uses ‘tor’ loop for reading and writing objects. This is possible because we
know the exact number of objects in the file. In case, the length of the file is not known, we
can determine the file-size in terms of objects with the help of the file pointer functions and
wse it in the ‘for’ loop or we may use while(file) test approach to decide the end of the file. '
These techniques are discussed in the next section.

111.8 Updating a File: Random Acess

Updating is a routine task in the maintenance of any data file. The updating would include
ene or more of the following tasks:

Displaying the contents of a file.

344 & Object-Oriented Programming with C++

Modifying an existing item.
Adding a new item.
Deleting an existing item.

These actions require the file pointers to move to a particular location that corresponds to
the item/object under consideration. This can be easily implemented if the file contains a
collection of items/objects of equal lengths. In such cases, the size of each object can be
obtained using the statement

int object length = sizeof(object);
Then, the location of a desired object, say the mth object, may be obtained as follows:

int location = m * object length;

The location gives the byte number of the first byte of the mth object. Now, we can set
the file pointer to reach this byte with the help of seekg() or seekp().

We can also find out the total number of objects in a file using the object_length as
follows:

int n = file size/object length;

The file_size can be obtained using the function tellg() or tellp() when the file pointer is
located at the end of the file.

Program 11.7 illustrates how some of the tasks described above are carried out. The
program uses the “STOCK.DAT? file created using Program 11.6 for five items and performs
the following operations on the file:

1. Adds a new item to the file.
2. Modifies the details of an item.
3. Displays the contents of the file.

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>

class INVENTORY
{
.char name[10];
int code;
float cost;
(Contd)

Working with Files — 345

public:
void getdata(void)
{
cout << "Enter name: "; cin >> name;
cout << “"Enter code: "; cin >> code;
cout << "Enter cost: "; cin >> cost;
}
void putdata(void)
{
cout << setw(10) << name
<< setw(10) << code
<< setprecision(2) << setw(10) << cost
<< endl;
}
bs // End of class definition
int main()
{
INVENTORY item;
fstream inoutfile; // input/output stream

inoutfile.open("STOCK.DAT", jos:: ate | ios:: in |

jos::out | ios::binary);
inoutfile.seekg(0,i0s::beg); // go to start
cout << "CURRENT CONTENTS OF STOCK" << "\n";

while(inoutfile.read((char *) & item, sizeof item))

{
item,putdata();
}

inoutfile.clear(); // turn of EOF flag

/* >>>5>>>>>>>>> Add one more jtem <<<<<<<<<<<<<<< */

cout << "\nADD AN ITEM\n";

jtem.getdata();

char ch;

cin.get(ch);

inoutfile.write{(char *) & item, sizeof item);

// Display the appended file

inoutfile.seekg(0); // go to the start
(Contd)

348 - Obhject-Oriented Programming with C++

We are using the fstream class to declare the file streams. The fstream class inherits
two buffers, one for input and another for output, and synchronizes the movement of the
file pointers on these buffers. That is, whenever we read from or write to the file, both the
pointers move in tandem. Therefore, at any point of time, both the pointers point to the
same byte.

Since we have to add new objects to the file as well as modify some of the existing objects,
we open the file using ios::ate option for input and output operations. Remember, the
option ios:app allows us to add data to the end of the file only. The ios::ate mode sets the
file pointers at the end of the file when opening it. We must therefore move the 'get’ pointer
to the beginning of the file using the function seekg() to read the existing contents of the
file.

At the end of reading the current contents of the file, the program sets the EOF flag on.
This prevents any further reading from or writing to the file. The EOF flag is turned off by
using the function clear(), which allows access to the file once again.

After appending a new item, the program displays the contents of the appended file and
also the total number of objects in the file and the memory space occupied by them.

To modify an object, we should reach to the first byte of that object. This is achieved
using the statements

int location = (object-1) * sizeof(item);
inoutfile.seekp(location);

The program accepts the number and the new values of the object to be modified and
updates it. Finally, the contents of the appended and modified file are displayed.

Remember, we are opening an existing file for reading and updating the values. It is,

therefore, essential that the data members are of the same type and declared in the same
order as in the existing file. Since, the member functions are not stored, they can be different.

|11.9 Error Handling During File Operations

So far we have been opening and using the files for reading and writing on the assumption
that everything is fine with the files. This may not be true always. For instance, one of the
following things may happen when dealing with the files:

A file which we are attempting to open for reading does not exist.

The file name used for a new file may already exist.

We may attempt an invalid operation such as reading past the end-of-file.
There may not be any space in the disk for storing more data.

Ll e

Working with Files 9 349

5. We may use an invalid file name.
6. We may attempt to perform an operation when the file is not opened for that
purpose.

The C++ file stream inherits a 'stream-state' member from the class ios. This member
records information on the status of a file that is being currently used. The stream state
member uses bit fields to store the status of the error conditions stated above.

The class ios supports several member functions that can be used to read the status

recorded in a file stream. These functions along with their meanings are listed in
Table 11.4.

Table 11.4 Error handling functions

Function Return value and meaning

eof() Returns true (non-zero value) if end-of-file is encountered while reading;
Otherwise returns false(zero)

fail() Returns true when an input or output operation has failed

bad() Returns true if an invalid operation is attempted or any unrecoverable
error has occurred. However, if it is false, it may be possible to recover
from any other error reported, and continue operation.

good() Returns true if no error has occurred. This means, all the above functionsg
are false. For instance, if file.good() is true, all is well with the stream
file and we can proceed to perform I/O operations. When it returns false,
no further operations can be carried out.

These functions may be used in the appropriate places in a program to locate the status
of a file stream and thereby to take the necessary corrective measures. Example:

ifstream infile;
infile.open("ABC");
while(!linfile.fail())

.....

350e Object-Oriented Programming 1with (++

if(infile.bad())
{
..... (report fatal error)
}
else
{
infile.clear(); // clear error state
}

The function clear() (which we used in the previous section as well i resets the error
state so that further operations can be attempted.

Remember that we have already used statements such as
while(infile)

.....

and

while(infile.read(....))

.....

Here, infile becomes false (zero) when end of the file is reached tand eof() becomes true .

Il 1.10 Command-line Arguments

Like C, C++ too supports a feature that facilitates the supply of arguments to the main(Q
function. These arguments are supplied at the time of invoking the program. Theyv are
typically used to pass the names of data files. Example:

C > exam data results

Here, exam is the name of the file containing the program to be executed. and data and
results are the filenames passed to the program as command-line arguments.

